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ABSTRACT  

This work aims to apply the zero order 
sequential method [1] to five models to estimate 
the convection heat transfer coefficient, h, using 
the transient temperature measurements. Three 
different regularization parameters are analyzed. 
The values used for regularization parameter, α, 
are 0.0, 1.E-3 and 1.E-7. Comparison between 
analytical convection heat transfer coefficient and 
estimated convection heat transfer coefficient are 
presented. Also, the analysis for analytical and 
experimental temperature values obtained from 
heat transfer coefficient estimate values is shown.  
 
NOMENCLATURE: 
A - lateral surface of  body. 
a - auxiliary parameter. 

pc specific heat coefficient. 

)(th - time dependent heat transfer coefficient. 
*h - dimensionless heat transfer coefficient. 

0h - initial value of heat transfer coefficient. 

∞h - steady state heat transfer coefficient. 
m - auxiliary parameter. 
r -  futures times number. 

1ℜ - one dimensional space. 
S - functional number. 
t  -  time. 

0t - initial value time. 

0T - initial value  temperature. 

∞T - steady state  temperature. 
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)(tT - time dependent temperature. 

*T - dimensionless temperature. 
*
0T - initial dimensionless temperature. 

U - random set values. 
Y - experimental values temperature. 
∀ - volume. 
α - regularization parameter. 

iβ - identified coefficient. 

η - constant parameter in case 1. 
σ - standard deviation. 
ρ - specific mass. 

θ - difference between T0 and T∞. 
 
INTRODUCTION 

In many heat transfer problems in engineering 
is difficult to establish the heat transfer 
coefficients, for example, in the conduction 
diffusivity coefficient, convection the heat 
transfer coefficient and radiation extinction 
coefficient. Furthermore, if the problems are 
governed by elliptic partial differential equations, 
the difficult to establish them should be very large 
[2]. 

Colaço and Orlande [3] showed an application 
for the conjugate gradient method to estimate 
(convection heat transfer coefficient), h, in ℜ1 
space. Scott and Beck [4] applied the sequential 
regularization solutions in inverse heat 
conduction problem. In this work the zero order 
sequential method approach is used to estimate 
the convection heat transfer coefficient, h.  

Five different cases for a body of known 
dimensions that is submitted to the temporal 
variation of the temperature, in ℜ1 space are 
analyzed. 
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The first test case for h(t) are considered like a 
constant value for heat transfer coefficient, h(t) = 
h0. In the second test case, the variation is given 
by an exponential function [5]. In the third case 
h(t) has a variation with quadratic polynomial 
function, with coefficients βi proposed by Beck et 
al. [6]. For the fourth case, h(t) has a dependency 
of temperature profile and the last case has a 
combined function compose by exponential and a 
power [6]. 

A comparative analysis between the analytical 
and estimate of heat transfer coefficient and 
temperature for the diverse cases is shown, 
function of the regularization parameter, α. 
 
ANALITIC SOLUTION 

The analytic solution for the problem given by 
Newton’s cooler law, being a first-order 
differential equation [7]:  
 

))(()( tTTAth
dt
dT

cp −=∀ ∞ρ                       (1) 

 

With initial condition: 00 )( TtT =  
 

That is, to found the time dependent 
temperature, T(t), it is necessary before know the 
time dependent heat transfer coefficient h(t). 
 
ZERO ORDER SEQUENTIAL METHOD 

This method minimizes the differences between 
estimated and real temperatures adding a 
regularization term [1]. Beck developed zero 
order sequential method for flux problems in 
inverse heat conduction, but in this work it is 
utilized the regularization parameter, α applied  to 
estimate  heat  transfer coefficient, 1−+iMh  . 

In this particular application is assumed the 
quadratic sum for h coefficients, given by: 
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The identical approach applied in conduction 

problem, has presented by Woodbury and Ke [8], 
when the function h(t) was set constant and the 
value by h(tM) = hM, for the time tM, is determined 
for tM+1. At each time step, r futures times of data 
are used to regularize the problem. For evaluate 

the results by 1−+iMh  are calculated  the values by 

temperature 1−+iMT  across the relation: 
 

( ))exp( 1111 −−+−−+ −−= MiMMMiM tthmTT  (3) 
 
The value of hM is temporarily held constant 

over the r time steps. 
Differentiating the equation (2) with respect to 

hM and setting this derivate equal to zero, the 
result is: 
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Differentiating the temperature with respect to 

hM and using the interactive algorithm proposed 
by Beck et al. [1]: 
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The superscript ν indicates the interaction 

number and Z is the sensitivity coefficient. 
 

METHODOLOGY 
The procedure consists in: 

Step 1: The h(t) profile, for different cases are 
generated.  
Step 2: Using  the analytical profile by h(t), test 
case, to find T(t), (analytical temperature) solving 
equation (1).  
Step 3: Calculated 1−+iMT ; 1−+iMZ ; 1−+iMh  and S 
to five different models used in the algorithm of 
heat transfer estimation. The temperatures are 
compared between analytical and experimental 
heat transfer coefficients.  
 
TEST CASES 
 
Case 1 

In this in case, the convection heat transfer 
coefficient are considered constant, assuming h(t) 
= 10 W/m2K, a constant function. A parameter η1 
is defined as: 
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∀=− pcAh ρη /01             (6) 

 
The solution of equation (1) is: 
 

)exp().()( 10 tTTTtT η−−+= ∞∞       (7) 

 
Using dimensionless variable and changing 

parameters in equation (1):  
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( ) 0*
*

=+ Ttmh
dt

dT
             (8) 

The solution is: 

( )thmTT ..exp. **
0

* −=    (9) 

 
Figure (1) shows the comparative analysis 

between analytical and experimental temperature 
values obtained from Eq.(3) and Eq.(5). 
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Figure 1 – Temperature profile, Case1. 
 

In Fig. (1), it should be seen that the differences 
are very small among analytical and experimental 
temperature values. Experimental temperature 
values are obtained Eq.(3) by an interactive 
algorithm, where the previous interaction (ν) is 
necessary  to solve the next interaction (ν+1). 

 Figure (2), presents the analysis between 
analytical heat transfer coefficient and estimate 
values for all regularization parameters. The 
differences between h estimate values are very 
small approximated in third decimal order as Fig. 
(2). 
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Figure 2 – Estimation to heat transfer 

coefficient. 
 

    An analysis by the functional S, Eq.(2), Tab.(1) 
showed that the best regularization parameter is 
α= 0. For α= 1E-7 the difference is a fifth 
decimal order   and for α = 1E-3 the S values are 
lass then α= 0 and α= 1E-7 as showed in  Fig. (3) 
 

Table 1- S values by tree regularization 
parameters in Case1.  

 
ALFA S 

0.0 4,9817769157  
1.0E-3 5,3169177400  
1.0E-7 4,9817945646  
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Figure 3– Functional analysis for α values. 
 

Case 02 
In this case  the heat transfer coefficient, h(t), is 

written as an exponential profile, as in the work 
by  Cardoso, et al. [5], given by: 
  

)exp().()( 10 thhhth β−−+= ∞∞                  (10) 
 
   Solve the Eq.(1) with h(t) profile it is found T(t) 
profile given by: 
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The dimensionless parameters are defined as in 

case one: 
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The absolute differences among  temperature 

values  are third  decimal order as showed in 
Fig.(4). 
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Figure 4 – Analytical and experimental 

temperature values. 
 

Figure 5 shows the analysis between h(t) values 
and estimate heat transfer coefficient values for 
the regularization parameters. 
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Figure 5 – h estimate values. 
 

  Tab.(2) present the values for functional S in 
Case 2 for regularization parameters, α.  
 

Table 2 – S values by regularization parameter 
values in case2. 

 
ALFA S 

0.0 6,453576 
1.0 E –3 4,868277 
1.0 E -7 4,868126 
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   Figure (6) present the values described in 
Tab.(2) for regularization parameter α applied in 
case 2. 
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Figure 6 – S values for α in case2. 
 
Case 03 

In this case the heat transfer coefficient, h(t), is 
written as a quadratic function [6], given by: 
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The analytical temperature profile is given by: 
 
                                                                     (14)                                            
Utilizing dimensionless  changes: 
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Figure (7) shows the comparison between 
analytical and experimental values by temperature 
from the algorithm the estimation for heat transfer 
coefficient in case 3. 
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Figure 7– Comparison between temperature 
values. 

 
   Figure (8) presented the comparison between 
the analytical profile by h(t) and the estimate 
values for the heat transfer coefficient . In this 
case the physical model not is respected because 
assuming the quadratic function for h(t) the body 
present a positive variation for h, or either, 
heating. The estimate values presents in Fig. (8) 
showed the behavior according to physical model 
to the body cooling. 
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Figure 8 – Comparison among estimate and 

analytical suppose values by h. 
  In This case the best regularization parameter is 
α = 1E-3 because with the errors in analytical 
model, the zero order method applied the 
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minimize in this errors as showed in Fig. (9) and 
in table (3). 
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Figure 9 – S values in case3  
 

Table 3- S values for Case3 to α values. 
 

ALFA S 
0.0 131,2900737 

1.0 E -3 129,3676299 
1.0 E -7 131,2898973 

 
 

Case 04 
In this case h(t) is given by [6]: 
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and the solution of the equation (1)  is: 
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Using of dimensionless variables: 
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In this case the same tendency is showed for 

previous cases to analytical and experimental  
temperature values as can see  in  Fig.(10). 
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Figure 10 - Comparison among analytical and 
experimental values for temperature. 

 
Then the analysis by heat transfer coefficient 

the Fig.(11) presented a comparison among 
analytical and estimate values for heat transfer 
coefficient.  
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Figure 11 – h estimate values for α values. 

 
In This case the best regularization parameter is α 
= 1E-3 because the difference between in 
analytical model and experimental values, the 
zero order method are important to minimize this 
errors.  Fig.(12) and in Tab. (4). 
 

Table (4) – S values for α. 
 

ALFA S 
0.0 4964,078 

1.0 E –3 4903,025 
1.0 E -7 4964,072 
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Figure 12 – S values in case four. 
  
Case 05 

In this case h(t) is written as a composition of 
two function: exponential profile and power. 
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equation (1) has the following solution for this 
case: 
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Using dimensionless variables: 
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In Fig. (13) shows the small difference among 
analytical temperature profile and experimental 
temperature values obtained from estimate heat 

transfer coefficient values in Eq. (3) by an 
interactive algorithm.  

Figure (14) presents a comparison among the 
values for heat transfer coefficient estimate and 
analytical applied in case five. 
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Figure 13 – Comparison among analytical and 

experimental temperature values. 
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Figure 14 - Comparison among analytical and 
experimental heat transfer coefficient values. 

 
  The best value by regularization parameter is 
presented in Tab.(5) to Case 5. 
 
Table 5 – S values for α in case five. 
 

ALFA S 
0.0 88,856359 

1.0 E –3 92,374490 
1.0 E -7 88,856359 
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   The values by functional S are presents in Fig. 
(15) where to α =0.0 and α = 1.0 E –7 the 
functional S has a equal value. 
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Figure 15 – S values by α in Case5. 

 
CONCLUSION 

Five cases to estimate the convection heat 
transfer coefficient was analyzed for cooling billet 
model, using the zero order regularization 
sequential method.  

Case 1 was assumed that heat transfer 
coefficient is constant in practical problem the 
heat transfer coefficient has a behavior as Fig. (2). 
In Cases 1 and 2 the best value obtained for 
regularization parameter, α is zero. For all cases 
analyzed the values for analytical and 
experimental temperatures the difference is very 
small as in Figs. (1);(4); (7) and (13). 

Case 3 although the temperature shows similar 
to analytical temperature, the identified heat 
transfer coefficient has a different profile. In this 
case the zero order method applied execute the 
correction by h estimate values with robustness 
form. 
   Cases 4 and 5 satisfactory because the 
differences among analytical and experimental 
values by temperature are very small as shown in 
Fig.(13).  Then the heat transfer analysis as shown 
in Fig.(14) the same tendency among the values.                    
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